KONDISI KERJA MESIN REFRIGERASI KOMPRESI UAP PADA VARIASI MASSA REFRIGERAN HIDROKARBON
Abstract
ABSTRAK
Salah satu penentu pada kinerja mesin kompresi uap ditentukan adalah massa refrigeran. Kinerja mesin refrigerasi dapat dinilai pada kondisi kerja sistem meliputi temperature kotak pendingin, temperature kerja kondensor dan evaporator, tekanan kerja kondensor dan evaporator, dan daya kompresor pada variasi massa refrigeran yang ditetapkan. Untuk menganalisa kondisi kerja tersebut mesin refrigerasi kompresi uap diisi menggunakan refrigeran HCR-134a dengan variasi massa 60-220 gram. Hasil pengujian menunjukkan bahwa untuk seluruh variasi massa refrigeran, temperatur kotak pendingin dapat turun terhadap waktu operasi dimana rata-rata penurunan temperatur adalah 7 ºC. Tekanan evaporator dan tekanan kondensor meningkat dengan meningkatnya jumlah massa refrigeran yang dimasukkan kedalam system, mengakibatkan semakin meningkatnya kerja kompresor. Kenaikan daya kompresor setiap massa refrigeran rata-rata sebesar 0,016 kW.
Kata kunci : Mesin refrigerasi, kondisi kerja, massa refrigeran
ABSTRACT
One of the determinants of the performance of vapor compression machine is refrigerant mass. The performance of refrigeration machine can be assessed on the working conditions of the system including temperature of cooling box, evaporator and condenser temperature, evaporator and condenser pressure, and compressor power at the specified refrigerant mass variations. To analyze the working conditions, the vapor compression machine was filled by HCR-134a with a mass variation of 20-220 gram. The result showed that for all refrigerant mass variations, the temperature of the cooling box decrease with the operating time with the average temperature drop is 7ºC. The evaporator pressure and condenser pressure increase with the increase in the mass of refrigerant introduced into the system, resulting in increased of compressor work. In average, the increase in compressor power for each mass of refrigerant is 0.016 kW.
Keywords : Refrigeration machine, working conditions, refrigerant mass
Full Text:
PDFReferences
Arjianto and Kurdi, O. 2007. Pengujian Refrigeran Hycool Hcr-22 Pada Ac Splite Sebagai Pengganti Freon R-22. Rotasi 9(2), pp. 42-46–46. doi: 10.14710/rotasi.9.2.42-46.
Aziz, A. 2009. Studi Eksperimental Mesin Refrigerasi Siklus Kompresi Uap Menggunakan Refrigeran Hidrokarbon Substitusi R22 Pada Kondisi Transient. Teknik mesin 6(1), pp. 75–78.
Aziz, A. et al. 2017. Performance comparison of a refrigerator system using R134a and hydrocarbon refrigerant (HCR134a) with different expansion devices. IOP Conference Series: Materials Science and Engineering 237(1). doi: 10.1088/1757-899X/237/1/012008.
Aziz, A. and Rosa, Y. 2010. Performansi Sistem Refrigerasi Hibrida Perangkat Pengkondisian Udara Menggunakan Refrigeran Hidrokarbon Subsitusi R-22. Mechanical Engineering 7(1), pp. 10–16.
Azizpour, F. et al. 2013. A thermal comfort investigation of a facility department of a hospital in hot-humid climate: Correlation between objective and subjective measurements. Indoor and Built Environment 22(5), pp. 836–845. doi: 10.1177/1420326X12460067.
Daghigh, R. et al. 2009. Thermal comfort of an air-conditioned office through different windows-door opening arrangements. Building Services Engineering Research and Technology 30(1), pp. 49–63. doi: 10.1177/0143624408099448.
Daghigh, R. 2015. Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions. Renewable and Sustainable Energy Reviews 48, pp. 681–691. Available at: http://dx.doi.org/10.1016/j.rser.2015.04.017.
Dalkilic, A.S. and Wongwises, S. 2010. A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. International Communications in Heat and Mass Transfer 37(9), pp. 1340–1349. Available at: http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.07.006.
Dhamneya, A.K. et al. 2018. Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving. Journal of Building Engineering 17, pp. 52–64. Available at: https://doi.org/10.1016/j.jobe.2018.01.012.
Harby, K. 2017. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renewable and Sustainable Energy Reviews 73(February), pp. 1247–1264. Available at: http://dx.doi.org/10.1016/j.rser.2017.02.039.
Mageshwaran, G. et al. 2018. Energy saving in an air conditioning system using modified HVAC unit as an energy reducer. International Journal of Ambient Energy 39(7), pp. 719–725. Available at: http://dx.doi.org/10.1080/01430750.2017.1318790.
Prasetyo, E. et al. 2016. PERFORMANSI RESIDENTIAL AIR CONDITIONING HIBRIDA DENGAN STANDBY MODE MENGGUNAKAN REFRIGERAN HCR-22 UNTUK PENDINGIN. 3(1), pp. 1–5.
Wibowo et al 2006. Receiver Tank , Expansion Valve. 4(1), pp. 1–11.
DOI: http://dx.doi.org/10.31258/jst.v19.n2.p63-68
Copyright (c) September 2020 Rahmat Iman Mainil, Nurul Deswita, Afdhal Kurniawan Mainil, Azridjal Aziz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.