PENGUJIAN PENGERING TENAGA SURYA TIPE PEMANASAN LANGSUNG DENGAN UNTUK PENGERINGAN PISANG PADA KONDISI BERBEDA

Azridjal Aziz, Ahmad Surya, Rahmat Iman Mainil

Abstract


Alat pengering tenaga surya tipe pemanasan langsung telah diuji untuk pengeringan pisang pada kondisi berbeda. Alat pengering yang diuji merupakan alat pengering hibrida yang bias digunakan dengan sumber energy lain, selain menggunakan energy surya sebagai sumber energi utama pada siang hari, sedangkan gas LPG digunakan pada pengeringan di malam hari. Hasil penelitian menunjukkan temperatur tertinggi, penurunan kadar air tertinggi pada pengujian dengan LPG diperoleh pada rak 6, sedangkan terendah diperoleh pada rak 1, karena sumber kalor berada di bawah rak 6, hal sebaliknya terjadi pada pengeringan menggunakan energy surya, karena sumber kalor berasal dari bagian atas atau pada rak 1. Pada pengujian dengan LPG, temperatur tertinggi yang dapat dicapai yaitu 84,7 °C yaitu pada rak 6, sedangkan temperatur terendah 52,3 °C pada rak 1, sebaliknya temperatur pisang dengan menggunakan tenaga surya temperatur tertinggi pada rak 1 pada jam 11.00 WIB sebesar 62,9 °C dan paling rendah pada rak 1 pada jam 17.00 WIB sebesar 37,1 °C. Kebutuhan energi total pengeringan pada pengujian menggunakan gas LPG sebesar 4681,92 kJ sedangkan kebutuhan energi total pengeringan pada pengujian menggunakan tenaga surya sebesar 3176,24 kJ. Pengeringan menggunakan energi surya lebih ekonomis dibanding menggunakan gas LPG, namun waktu pengeringan lebih lama dibanding LPG. Pengeringan menggunakan alat pengering kualitasnya lebih baik dan higienis dibanding penjemuran langsung.


Keywords


alat pengering, energi surya, LPG, pengering pemanasan langsung,

Full Text:

PDF

References


Arun, K.R. et al. 2019. Active drying of unripened bananas (Musa Nendra) in a multi-tray mixed-mode solar cabinet dryer with backup energy storage. Solar Energy 188(April), pp. 1002–1012. Available at: https://doi.org/10.1016/j.solener.2019.07.001.

Babar, O.A. et al. 2020. Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. Journal of Food Process Engineering (May). doi: 10.1111/jfpe.13484.

Baniasadi, E. et al. 2017. Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage. Renewable Energy 112, pp. 143–150. doi: 10.1016/j.renene.2017.05.043.

Castillo Téllez, M. et al. 2018. Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies. Solar Energy 159(November 2017), pp. 898–907. Available at: https://doi.org/10.1016/j.solener.2017.11.031.

Chauhan, Y.B. and Rathod, P.P. 2020. A comprehensive review of the solar dryer. International Journal of Ambient Energy 41(3), pp. 348–367. Available at: https://doi.org/10.1080/01430750.2018.1456960.

Chavan, A. et al. 2020. Natural convection and direct type (NCDT) solar dryers: a review. Drying Technology 0(0), pp. 1–22. Available at: https://doi.org/10.1080/07373937.2020.1753065.

Essalhi, H. et al. 2018. Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun. Innovative Food Science and Emerging Technologies 49, pp. 58–64. Available at: https://doi.org/10.1016/j.ifset.2018.08.002.

Etim, P.J. et al. 2020. Design and development of an active indirect solar dryer for cooking banana. Scientific African 8. doi: 10.1016/j.sciaf.2020.e00463.

Fadhel, A. et al. 2018. Experimental investigation of the solar drying of Tunisian phosphate under different conditions. Renewable Energy 116, pp. 762–774. doi: 10.1016/j.renene.2017.10.025.

Gudiño-Ayala, D. and Calderón-Topete, Á. 2014. Pineapple drying using a new solar hybrid dryer. Energy Procedia 57, pp. 1642–1650. Available at: http://dx.doi.org/10.1016/j.egypro.2014.10.155.

El Hage, H. et al. 2018. An investigation on solar drying: A review with economic and environmental assessment. Energy 157, pp. 815–829. doi: 10.1016/j.energy.2018.05.197.

https://www.commercialwindows.org/transmittance.php

Islam, M.K. et al. 2018. Fabrication and Performance Study of a Direct Type Solar Dryer. (February)

Kabeel, A.E. et al. 2016. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management 113, pp. 264–272. Available at: http://dx.doi.org/10.1016/j.enconman.2016.01.068.

Khaing Hnin, K. et al. 2019. Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology 37(12), pp. 1465–1480. Available at: https://doi.org/10.1080/07373937.2018.1510417.

Khanlari, A. et al. 2020. Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable Energy 145, pp. 1677–1692. doi: 10.1016/j.renene.2019.07.076.

Kiggundu, N. et al. 2016. Solar fruit drying technologies for smallholder farmers in Uganda, a review of design constraints and solutions. Agricultural Engineering International: CIGR Journal 18(4), pp. 200–210.

Lingayat, A. et al. 2017. Design, Development and Performance of Indirect Type Solar Dryer for Banana Drying. Energy Procedia 109(November 2016), pp. 409–416. Available at: http://dx.doi.org/10.1016/j.egypro.2017.03.041.

R., B. et al. 2018. Performance Evaluation of Solar and Oven Drying for Tropical Fruits. International Journal of Advances in Scientific Research and Engineering 4(12), pp. 215–224. doi: 10.31695/ijasre.2018.33025.

Rabha, D.K. and Muthukumar, P. 2017. Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system. Solar Energy 149, pp. 214–226. Available at: http://dx.doi.org/10.1016/j.solener.2017.04.012.

Rodriguez, A. et al. 2019. Experimental study of dehydration processes of raspberries (Rubus idaeus) with microwave and solar drying. Food Science and Technology 39(2), pp. 336–343. doi: 10.1590/fst.29117.

Sandali, M. et al. 2019. Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study. Renewable Energy 135, pp. 186–196. doi: 10.1016/j.renene.2018.11.086.

Sharma, A. et al. 2018. Low Carbon Energy Supply. Springer Singapore. Available at: http://dx.doi.org/10.1007/978-981-10-7326-7_3.

Stegou-Sagia, A. and Fragkou, D. V. 2018. Thin layer drying modeling of apples and apricots in a solar-assisted drying system. Journal of Thermal Engineering 4(1), pp. 1680–1691. doi: 10.18186/journal-of-thermal-engineering.364909.

Sunitha Venkataseshamamba, B. et al. 2017. Study on effect of quality of green banana flour using different drying techniques. 6(10), pp. 1–7.

Taib, Gunarif; Said, Gumbira; Wiraatmaja, Suteja. 1988. Operasi pengeringan pada pengolahan hasil pertanian /Gunarif Taib, Gumbira Said, Sutedja Wiraatmadja.: Mediyatama Sarana Perkasa.

Thongsan, S. et al. 2017. Development of solar collector combined with thermoelectric module for solar drying technology. Energy Procedia 138, pp. 1196–1201. Available at: https://doi.org/10.1016/j.egypro.2017.10.388.

Yadav, S. and Chandramohan, V.P. 2020. Performance comparison of thermal energy storage system for indirect solar dryer with and without finned copper tube. Sustainable Energy Technologies and Assessments 37(September 2019), p. 100609. Available at: https://doi.org/10.1016/j.seta.2019.100609.




DOI: http://dx.doi.org/10.31258/jst.v18.n2.p82-90

Copyright (c) February 2020 Azridjal Aziz, Ahmad Surya, Rahmat Iman Mainil

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.