MODEL KINETIKA REAKSI VULKANISASI KARET ALAM DENGAN *FILLER* ABU SAWIT

Jabosar Ronggur, Ahmad Fadli, dan Bahruddin

Jurusan Teknik Kimia, Fakultas Teknik, Universitas Riau, Kampus Bina Widya Jalan Raya HR. Subrantas km 12,5 Simpang Baru Panam, Pekanbaru, 28293

E-mail : jabosarronggur@gmail.com

ABSTRAK

Pembentukan karet vulkanisat secara umum dilakukan dengan penambahan *filler* yang dapat membantu memperbaiki sifat - sifat pada karet alam. Abu sawit yang termasuk limbah dapat digunakan sebagai *filler* pada karet alam. Tujuan penelitian ini adalah untuk menentukan model kinetika reaksi vulkanisasi karet alam dengan *filler* abu sawit yang sesuai. Model reaksi yang dipakai mengacu pada 3 model reaksi Ghosh *et al* [2003] yang telah dimodifikasi dengan variasi akselerator MBTS (0,5, 0,75, dan 1 phr), variasi sulfur (2 dan 4 phr), dan variasi suhu vulkanisasi (150 °C, 160 °C, 170 °C) dari alat analisa *Moving Disk Rheometer* (MDR). Hasil penelitian menunjukkan bahwa model kinetika reaksi proses vulkanisasi karet alam dengan *filler* abu sawit paling baik digambarkan dengan model 2, yaitu model dengan penambahan sulfur secara bertahap dengan mol *crosslink* vulkanisasi karet alam dengan *filler* abu sawit terbesar didapat dari sampel dengan konsentrasi sulfur 4 phr dan MBTS 0,75 phr pada suhu 150°C yaitu sebesar 80,523 mol/m³.

Kata kunci: abu sawit, filler, karet, model kinetika, vulkanisasi.

ABSTRACT

Formation of vulcanized rubber is generally accomplished by the addition of filler that can help improve the mechanical properties of natural rubber. Including waste palm fly ash can be used as filler in natural rubber. The purpose of this research is to determine the kinetic model of natural rubber vulcanization reactions filled with palm fly ash. Model reaction used refers to three models of reaction mechanisms Ghosh et al [2003] that has been modified with a variation of MBTS accelerator (0.5, 0.75, and 1 phr), sulfur (2 and 4 phr), and vulcanization temperature (150 ° C, 160 ° C, and 170 ° C) of Moving Disk Rheometer (MDR). The results showed that the model kinetics of natural rubber vulcanization process with palm fly ash filler is best described by model 2, the model with the addition of sulfur sequentially and the largest mole crosslink vulcanization of natural rubber with palm fly ash filler obtained from a sample with a concentration of 4 phr sulfur and MBTS 0,75 phr at 150°C temperature that is equal to 80.523 mol/m³.

Keywords: filler, natural rubber, palm fly ash, reaction kinetics model, vulcanization.

PENDAHULUAN

Indonesia adalah negara yang memiliki luas lahan karet terbesar di dunia dengan luas 3,445 juta hektar pada tahun 2010 [Dirjen Perkebunan, 2011]. Sedangkan dalam hal produksi, Indonesia adalah negara kedua yang memproduksi karet terbesar di dunia yaitu 2,7 juta ton pada tahun 2010 setelah Thailand yang memproduksi sebesar 9,6 juta ton [Gapkindo, 2011].

Pada penelitian ini akan digunakan abu sawit yang digunakan sebagai *filler* pada karet alam. *Filler* abu sawit ini diharapkan dapat dimanfaatkan

sebagai alternatif pengolahan limbah dan tambahan dalam proses pembuatan karet vulkanisat.

Pemahaman tentang proses vulkanisasi secara keseluruhan membutuhkan penelitian tersendiri. Oleh karena itu, pada penelitian ini akan disajikan pembahasan mengenai model kinetika mekanisme reaksi vulkanisasi karet alam dengan *filler* abu sawit.

Pada penelitian ini akan dipakai 3 model mekanisme reaksi pararel yang telah dimodifikasi pada penelitian Ghosh *et al* [2003]. Model – Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42 ISSN 1412-6257

model tersebut terdiri dari 3 macam model reaksi. Model 1 adalah model penambahan sulfur secara satu tahap yaitu reaksi vulkanisasi dengan penambahan sulfur 8 atom sekaligus. Model 2 adalah model penambahan sulfur secara bertahap yaitu reaksi vulkanisasi dengan penambahan sulfur tiap 1 atom. Sedangkan model tiga adalah modifikasi dari model 2 tanpa disertai adanya reaksi antara sulfur dan akselerator. Model model tersebut antara lain:

Tabel 1. Mekanisme reaksi vulkanisasi karet alam dengan penambahan sulfur dengan satu tahap

No	Reaction Type	Rate		
		Constant		
Acce	elerator Chemistry			
1	$A_x + S_8 \rightarrow A_{x+8} : 0 \leq x \leq 6$	k _{A-S}		
2	$A_o + A_x \leftrightarrow A_y + A_z : x=y+z$ and	k _{A-A}		
	1 ≤x,y,z≤ 14			
Cros	sslinking Chemistry			
3	$A_x + Rubber \rightarrow B_x + MBT$:	k _{A-R}		
	0≤x≤14			
4	$B_x \rightarrow B_y^* + E_z^* : 1 \le x, y, z \le 16$	k _{B-R}		
5	$B^*_x + Rubber \rightarrow Vu_x : 1 \le x \le 16$	k _{VU}		
Post – Crosslinking Chemistry				
6	$Vu_x \rightarrow Dead Ends: 1 \le x \le 16$	k _{DEG}		
7	$Vu_x + A_o \rightarrow Vu_{x\text{-}1} + A_1 : 1 \leq x \leq$	k _{DESULF}		
	16			
Othe	er Reaction			
8	$E^*_x + S_8 \rightarrow E^*_{x+8} : 0 \leq x \leq 8$	k _{E-S}		
9	$E^*_x + Rubber \rightarrow B_x : 0 \le x \le 16$	k _{E-R}		
10	$B^*_x + S_8 \rightarrow B^*_{x+8} : 1 \le x \le 8$	k _{BST-S}		
11	$B^*_x + Rubber \rightarrow L_x : 1 \le x \le 16$	k LOOP		
12	$B^*_x + A_o \rightarrow B_x + E^*_o : 1 \le x \le 16$	k _{A-BST}		
13	$E^*_{x} + E^*_{o} \rightarrow A_x : 0 \leq x \leq 14$	k _{E-E}		

Sumber : Modifikasi [Ghosh et al, 2003]

Tabel 2. Mekanisme reaksi vulkanisasi karet alamdengan penambahan sulfur secara bertahap

No	Reaction Type	Rate		
		Constant		
Acce	elerator Chemistry			
1	$A_x + S_y \rightarrow A_{x+1} + S_{y-1} : 0 \le x \le 14,$	k _{A-S}		
	1≤y≤8			
2	$A_o + A_x \leftrightarrow A_y + A_z$: x=y+z and	ka-a		
	1 ≤x,y,z≤ 14			
Cros	Crosslinking Chemistry			
3	A_x + Rubber $\rightarrow B_x$ + MBT:	k _{A-R}		
	0≤x≤14			
4	$B_x \rightarrow B^*_y + E^*_z : 1 \le x, y, z \le 16$	k в-к		
5	$B_x^* + Rubber \rightarrow Vu_x : 1 \le x \le 16$	k _{VU}		
Post – Crosslinking Chemistry				
6	Vu _x → Dead Ends : 1≤x≤16	K DEG		
7	$Vu_x + A_o \rightarrow Vu_{x-1} + A_1 : 1 \le x \le$	K DESULF		
	16			

No	Reaction Type	Rate		
		Constant		
Othe	er Reaction			
8	$E^*{}_x + S_y \to E^*{}_{x+1} + S_{y-1}{:}$	k _{E-S}		
	0≤x≤16, 1≤y≤8			
9	E^*_x + Rubber $\rightarrow B_x$: 0 $\leq x \leq 16$	k e-r		
10	$B^{*}_{x} + S_{y} \rightarrow B^{*}_{x+1} + S_{y-1}$:	k _{BST-S}		
	1≤x≤16, 1≤y≤8			
11	B^*_x + Rubber $\rightarrow L_x$: 1 $\leq x \leq 16$	K LOOP		
12	$B^*{}_x + A_o \mathop{\rightarrow} B_x + E^*{}_o : 1 {\leq} x {\leq} 16$	k A-BST		
13	$E_x^* + E_o^* \rightarrow A_x : 0 \le x \le 14$	k _{E-E}		
Sumber: Medifikasi [Check at al 2002]				

Sumber : Modifikasi [Ghosh et al, 2003]

Tabel 3 Mekanisme Reaksi Vulkanisasi Karet Alam Dengan Penambahan Sulfur Secara Bertahap Tanpa Adanya Reaksi Antara Sulfur Dengan Senyawa Polisulfida

No	Reaction Type	Rate	
		Constant	
Acce	elerator Chemistry		
1	$A_x \rightarrow E^*_y + E^*_z : 0 \le x \le 14, y + z = x$	kв	
2	$A_o + A_x \leftrightarrow A_y + A_z$: x=y+z and	k _{A-A}	
	1 ≤x,y,z≤ 14		
Cros	slinking Chemistry		
3	A_x + Rubber $\rightarrow B_x$ + MBT:	k a-r	
	0≤x≤14		
4	$B_x \rightarrow B^*_y + E^*_z : 1 \leq x, y, z \leq 16$	k _{B-R}	
5	$B^*x + Rubber \rightarrow Vu_x : 1 \le x \le 16$	kνυ	
Post	- Crosslinking Chemistry		
6	$Vu_x \rightarrow Dead Ends : 1 \le x \le 16$	K DEG	
7	$Vu_x + A_o \rightarrow Vu_{x\text{-}1} + A_1 : 1 \leq x \leq 16$	K DESULF	
Othe	r Reaction		
8	$E^*_x + S_y \rightarrow E^*_{x+1} + S_{y-1}: 0 \le x \le 16,$	k _{E-S}	
	1≤y≤8		
9	$E^*x + Rubber \rightarrow B_x : 0 \le x \le 16$	ke-r	
10	$B^*_x + S_y \rightarrow B^*_{x+1} + S_{y-1}$: 1≤x≤16,	k _{BST-S}	
	1≤y≤8		
11	$B_x^* + Rubber \rightarrow L_x : 1 \le x \le 16$	K LOOP	
12	$B^*{}_x + A_o \rightarrow B_x + E^*{}_o : 1 \le x \le 16$	k A-BST	
13	$E^*_x + E^*_o \rightarrow A_x : 0 \le x \le 14$	k _{E-E}	
Sumber : Modifikasi [Chosh et al. 2003]			

Sumber : Modifikasi [Ghosh et al, 2003]

Dari 3 model diatas diketahui bahwa terdapat 15 konstanta reaksi yang belum ditentukan nilainya. Konstanta – konstanta reaksi pada tiga model reaksi diatas dapat di eliminasi sesuai dengan asumsi reaksi yang ada sebagai berikut : [Ghosh *et al*, 2003]

- 1. Konstanta reaksi K_{E-R} dan K_{vu} diasumsikan sama karena kedua konstanta reaksi ini merupakan konstanta reaksi radikal polisulfida aktif pada karet.
- 2. Konstanta reaksi K_{BST-S} dan K_{E-S} diasumsikan sama karena kedua konstanta reaksi ini

Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42 ISSN 1412-6257

merupakan konstanta reaksi antara polisulfida sulfur dengan sulfur.

- 3. Konstanta reaksi K_{A-BST},K_{DESULF}, dan K_{A-A} diasumsikan sama karena ketiga konstanta reaksi ini mengendalikan reaksi pertukaran sulfur diantara polisulfida.
- 4. Konstanta reaksi $K_{LOOP} = 0,1 \times K_{Vu}$ dimana K_{LOOP} adalah reaksi dimana sulfur mengikat rantai karet yang sama.

Dari berbagai asumsi diatas maka konstanta – konstanta reaksi yang perlu ditentukan adalah sebanyak 8 konstanta reaksi.

BAHAN DAN METODE

Peralatan yang digunakan untuk penyiapan sampel meliputi: peralatan untuk pembuatan kompon karet, yaitu *Two-roll Mixing Mill*, spesifikasi: *control speed* Toshiba UF-S9 400 volt, 3,7 kw; motor Teco 1440 rpm, 5 hp; diameter *roll* 10 cm dan panjang roll 35 cm; sedangkan peralatan untuk mengukur *shear modulus*, yaitu *Moving Disk Rheometer*, spesifikasi: Gotech M – 3000A.

Bahan utama yang digunakan dalam penelitian ini adalah abu sawit sebagai *filler* yang diperoleh dari pabrik kelapa sawit lokal (Riau), karet alam (SIR-20 dengan *Mooney Viscosity* 70 pada 100 °C), yang diperoleh dari pabrik pengolahan karet lokal (Riau). Bahan aditif yang ditambahkan meliputi Sulfur 2 dan 4 per hundred rubber (phr); Mercaptodibenzo-thiazoledisulfide (MBTS) 0,5; 0,75; dan 1 phr; Zinc Oxide 5 phr; Asam Stearat 3 phr; Trimethylquinone (TMQ) jenis Flectol TMQ 1 phr, dan Plastisizer 2,5 phr.

Variabel bebas yang digunakan yaitu jumlah massa MBTS, massa sulfur dan variasi suhu. Massa MBTS yang digunakan adalah 0,5 phr, 0,75 phr, dan 1 phr. Massa sulfur yang digunakan adalah 2 phr dan 4 phr. Suhu yang digunakan adalah 150°C, 160°C dan 170°C.

Komponen	Α	В	С	D	Ε	F
(phr)						
Karet (NR)	100	100	100	100	100	100
Plasticizer	2,5	2,5	2,5	2,5	2,5	2,5
Filler Abu Sawit	30	30	30	30	30	30
ZnO	5	5	5	5	5	5
Asam Stearat	3	3	3	3	3	3
TMQ (Antidegradant)	1	1	1	1	1	1
MBTS	0,5	0,75	1	0,5	0,75	1
Sulfur	2	2	2	4	4	4

Abu terbang sawit diperoleh dari sisa pembakaran cangkang dan sabut sawit dalam *boiler* yang jatuh dalam *dumper dust collector* pada pabrik *Crude Palm Oil* (CPO) yang berada di Sorek, Pekanbaru (PT. Sarikat Putra Riau). Abu terbang sawit (*fly ash*) dijemur terlebih dahulu, lalu di oven pada suhu $105^{\circ}C \pm 3^{\circ}C$ sampai beratnya konstan. Setelah proses pengovenan, abu terbang sawit diayak terlebih dahulu untuk mendapatkan ukuran ≤ 200 mesh. Proses pembuatan abu terbang sawit yang ukurannya direduksi dilakukan selama 16 jam menggunakan *ball mill* sehingga diperoleh ukuran abu terbang sawit (*fly ash*) sekitar 700 - 800 nm.

Karet dimastikasi dengan menggilingnya dalam *roll mill* sampai teksturnya halus dan lunak. Karet kemudian ditambahkan bahan – bahan pembuatan kompon secara berturut – turut. Tahap pencampuran material dalam *roll mill* dapat dilihat pada Tabel 5. Setelah proses pembuatan kompon, kompon dengan berbagai variasi MBTS dan sulfur dapat dibagi menjadi 3 bagian agar dapat dianalisa sesuai 3 variasi suhu yang ada (150°C, 160°C, dan 170°C).

Tabel 5. Tahapan Proses Pencampuran MaterialDalam Roll Mill

Altivitas	Kuantitas	Menit
AKUVILAS	(phr)	ke-
Karet (NR)	100	0
Penambahan plasticizer	2,5	15
Filler	30	15
Penambahan ZnO	5	25
Penambahan asam stearat	3	29
Penambahan TMQ	1	33
Penambahan MBTS	1; 0,5; 0,75	37
Penambahan Sulfur	2 dan 4	41
Penghentian proses pencampuran	-	45

Proses vulkanisasi kompon ini dilakukan pada alat *Moving Disc Rheometer* (MDR) dengan berbagai variasi suhu 150°C, 160°C dan 170°C.

Konversi data *shear modulus* menjadi *crosslink* dapat menggunakan rumus: [Ghosh *et al*, 2003] ΔG^*

$$v = \frac{1}{2.k.T}$$
Dimana :

$$\Delta G = G^*_t - G^*_{min}$$

$$G^*_t = shear modulus \text{ saat waktu tertentu (kpa)}$$

$$G^*_{min} = \text{minimum shear modulus (kpa)}$$

$$T = \text{suhu reaksi (°K)}$$
k (konstanta boltzman) = 1,38 x (10⁻²³) Nm/°K

Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42 ISSN 1412-6257

Proses optimasi konstanta – konstanta reaksi dapat menggunakan aplikasi *optimization toolbox fminsearch* yang terimplementasi pada *software matlab* sedangkan proses penyelesaian persamaan differensial dilakukan dengan metode Runge Kutta menggunakan *ode45* pada matlab. Dimana dalam menyelesaikannya diperlukan nilai konsentrasi awal senyawa sulfur dan MBTS sebagai *input* kedalam *software* dan nilai asumsi awal tiap – tiap konstanta reaksi yang akan dioptimasi adalah 0,1.

Dari berbagai model tabel mekanisme reaksi dapat dibuat dan disederhanakan menjadi berbagai persamaan reaksi. Untuk model 1 persamaan reaksi:

$$\frac{\mathrm{d}}{\mathrm{dt}}[B_x^*] = -k_{VU}[B_x^*] - k_{LOOP}[B_x^*] - k_{A-BST}[A_0][B_x^*] + k_{B-R}[B_x^*]$$
(2)

$$\frac{d}{dt}[E_x^*] = k_{B-R}[B_x^*] - k_{E-R}[E_x^*] - k_{E-E}[E_x^*][E_0^*] + k_{A-BST}[A_0][B_x^*]$$
(3)

$$\frac{d}{dt}[E_0^*] = k_{B-R}[B_x^*] + k_{A-BST}[A_0][B_x^*] - k_{E-R}[E_0^*] - k_{E-E}[E_0^*][E_x^*] - k_{E-S}[E_0^*][S_8]$$
(4)

$$\frac{\mathrm{d}}{\mathrm{dt}}[B_x] = 2k_{A-R}[A_x] - k_{B-R}[B_x] + k_{E-R}[E_x^*] + k_{A-BST}[A_0][B_x^*]$$
(5)

$$\frac{\mathrm{d}}{\mathrm{dt}}[Vu_x] = k_{VU}[B_x^*] - k_{DEG}[Vu_x] \tag{6}$$

$$\frac{d}{dt}[S_8] = -k_{A-S}[S_8][A_o] - k_{E-S}[S_8][E_0^*] - k_{BST-S}[S_8]$$
(7)

$$\frac{d}{dt}[A_x] = -2k_{A-R}[A_x] - k_{A-S}[A_o][S_8] + k_{DESULF}[Ao][Vux] + k_{E-E}[E_o^*][E_x^*] - 2k_{A-BST}[A_o][B_x^*]$$
(8)

$$\frac{\mathrm{d}}{\mathrm{dt}}[Ao] = -k_{A-S}[Ao][S_8] - k_{A-R}[Ao] - k_{A-BST}[Ao][B_x^*] + \frac{1}{2}k_{E-E}[\mathrm{E}_0^*]^2 - k_{DESULF}[Ao][\mathrm{Vux}]$$
(9)

Persamaan reaksi untuk model 2 menjadi:

$$\frac{\mathrm{d}}{\mathrm{dt}}[B_x^*] = -k_{VU}[B_x^*] - k_{LOOP}[B_x^*] - k_{A-BST}[A_0][B_x^*] + k_{B-R}[B_x^*]$$
(10)

$$\frac{d}{dt}[E_x^*] = k_{B-R}[B_x^*] - k_{E-R}[E_x^*] - k_{E-E}[E_x^*][E_0^*] + k_{A-BST}[A_0][B_x^*]$$
(11)

$$\frac{\mathrm{d}}{\mathrm{dt}}[E_0^*] = k_{B-R}[B_x^*] + k_{A-BST}[A_0][B_x^*] - k_{E-R}[E_0^*] - k_{E-E}[E_0^*][E_x^*] - \mathbf{k}_{E-S}[E_0^*][S_x]$$
(12)

$$\frac{d}{dt}[B_x] = 2k_{A-R}[A_x] - k_{B-R}[B_x] + k_{E-R}[E_x^*] + k_{A-BST}[A_0][B_x^*]$$
(13)

$$\frac{\mathrm{d}}{\mathrm{dt}}[Vu_x] = k_{VU}[B_x^*] - k_{DEG}[Vu_x] \tag{14}$$

$$\frac{d}{dt}[S_x] = -k_{A-S}[S_x][A_x] - k_{E-S}[S_x][E_x^*] - k_{BST-S}[S_x][B_x^*]$$
(15)

$$\frac{d}{dt}[A_x] = -2k_{A-R}[A_x] + k_{DESULF}[Ao][Vux] + k_{E-E}[E_0^*][E_x^*] - 2k_{A-BST}[A_0][B_x^*]$$
(16)

$$\frac{d}{dt}[Ao] = -k_{A-S}[Ao][S_x] - k_{A-R}[Ao] - k_{A-BST}[Ao][B_x^*] + \frac{1}{2}k_{E-E}[E_0^*]^2 - k_{DESULF}[Ao][Vux]$$
(17)

Persamaan reaksi untuk model 3 menjadi:

$$\frac{\mathrm{d}}{\mathrm{dt}}[B_x^*] = -k_{VU}[B_x^*] - k_{LOOP}[B_x^*] - k_{A-BST}[A_0][B_x^*] + k_{B-R}[B_x^*]$$
(18)

$$\frac{d}{dt}[E_x^*] = k_{B-R}[B_x^*] - k_{E-R}[E_x^*] - k_{E-E}[E_x^*][E_0^*] + k_{A-BST}[A_0][B_x^*] + 2k_b[A_x]$$
(19)

$$\frac{d}{dt}[E_0^*] = k_{B-R}[B_x^*] + k_{A-BST}[A_0][B_x^*] - k_{E-R}[E_0^*] - k_{E-E}[E_0^*][E_x^*] - k_{E-S}[E_0^*][S_x] + k_b[A_o] + k_b[A_x]$$
(20)

Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42
ISSN 1412-6257

$$\frac{d}{dt}[B_{x}] = 2k_{A-R}[A_{x}] - k_{B-R}[B_{x}] + k_{E-R}[E_{x}^{*}] + k_{A-BST}[A_{0}][B_{x}^{*}]$$
(21)

$$\frac{d}{dt}[Vu_{x}] = k_{VU}[B_{x}^{*}] - k_{DEG}[Vu_{x}]$$
(22)

$$\frac{d}{dt}[S_{x}] = -k_{E-S}[S_{x}][E_{x}^{*}] - k_{BST-S}[S_{x}][B_{x}^{*}]$$
(23)

$$\frac{d}{dt}[A_{x}] = -2k_{A-R}[A_{x}] + k_{DESULF}[Ao][Vux] + k_{E-E}[E_{0}^{*}][E_{x}^{*}] - 2k_{A-BST}[A_{0}][B_{x}^{*}] - k_{b}[A_{x}]$$
(24)

$$\frac{d}{dt}[Ao] = -k_{A-R}[Ao] - k_{A-BST}[Ao][B_{x}^{*}] + \frac{1}{2}k_{E-E}[E_{0}^{*}]^{2} - k_{DESULF}[Ao][Vux]$$
(25)

HASIL DAN PEMBAHASAN

Penentuan Energi Aktivasi (Ea) dan Preeksponensial Faktor (Ao)

Energi aktivasi (Ea) dan Pre-eksponensial faktor (A) diperoleh menggunakan persamaan Arrhenius [Fogler, 1999]. Dengan memplot antara In k dengan 1/T maka akan didapat nilai Ea dan A.

Dari hasil optimasi konstanta reaksi sesuai Tabel 4.1 maka untuk model 1 dipilih konstanta reaksi dari sampel sulfur 2 phr dan MBTS 0,5 phr, model 2 dipilih konstanta reaksi dari sampel sulfur 2 phr dan MBTS 1 phr, dan model 3 dipilih konstanta reaksi dari sampel 2 phr dan MBTS 0,5 phr. Pemilihan konstanta reaksi untuk model didasarkan atas nilai *sum of square error* yang paling kecil.

Tabel 6. Perhitungan Energi Aktivasi (Ea) dan Preeksponensial Faktor (A) Model 1.

Ionia	٨		%
Jenns	A	Ea (J/mol)	Kesalahan
Kvu	1,69 x (10 ⁻¹¹)	-78135	0,973
Kaa	4,14 x (10 ¹¹)	105986,9	0,776
Kbr	4,11 x (10 ⁻⁶)	-37180,2	0,542
Kee	3,18 x (10 ⁻³⁰)	-230514	0,510
Kes	31,816	21358,67	0,020
Kar	47,750	21250,58	0,010
Kdeg	2,611	9586,042	0,156
Kas	$2.70 \text{ x} (10^{-10})$	-66911,1	0,754

Dari Tabel 6, 7 dan 8 didapat adanya energi aktivasi bernilai negatif. Energi aktivasi bernilai negatif ini didapat pada konstanta – konstanta reaksi yang terlibat dalam reaksi yang membentuk *crosslink* pada mekanisme reaksi vulkanisasi karet sesuai Tabel 2.5, 2.6 dan 2.7. Hal ini dimungkinkan karena sifat reaksi vulkanisasi yang bersifat eksotermis [Vasilakos and Tarantili, 2012]. Konsep ini sesuai dengan pernyataan bahwa konversi reaksi eksotermis turun pada

penambahan suhu reaksi yang lebih tinggi [Levenspiel, 1999].

Tabel 7. Perhitungan Energi Aktivasi (Ea) dan Preeksponensial Faktor (A) Model 2

Ionia	А		%
Jenns		Ea (J/mol)	Kesalahan
Kvu	21,115	18540,22	0,808
Kaa	5,74 x (10 ²⁴)	219107,2	0,998
Kbr	3,377	10442,38	0,988
Kee	0,991	10741,69	0,026
Kes	2482,446	37005,61	0,398
Kar	32,201	20169,76	0,925
Kdeg	7,84 x (10 ⁻⁵)	-26604,8	0,286
Kas	2,39 x (10 ⁻²⁰)	-152620	0,835

Tabel 8. Perhitungan Energi Aktivasi (Ea) dan Pre-eksponensial Faktor (A) Model 3

F		()	
Jenis	A	Ea (J/mol)	% Kealahan
Kvu	0,099	407,884	0,001
Kaa	4,14 x (10 ⁻¹²)	-85709	0,399
Kbr	179,289	25873,17	0,834
Kee	5,47 x (10 ⁻³⁹)	-302147	0,988
Kes	72565488,4	76339,15	0,041
Kar	16,593	17833,53	0,768
Kdeg	3,03 x (10 ¹¹)	102162,4	0,613
Kb	3,37 x (10 ⁻¹⁰)	-69854,2	0,381

Prediksi Model Terhadap Mekanisme Reaksi Vulkanisasi Karet Alam Dengan *Filler* Abu Sawit

Dari perhitungan mol *crosslink* telah dilakukan dan didapatkan bahwa sampel sulfur 4 phr dan MBTS 0,75 phr pada suhu 150°C merupakan sample yang menghasilkan jumlah *crosslink* yang tertinggi sehingga sampel inilah yang akan dibahas terhadap model – model reaksi.

Tabel 9. F	Konstanta Re	eaksi Suhu 15	0 °C Tiap Mod	lel
Jenis	Model 1	Model 2	Model 3	
Kvu	0,0750	0,1086	0,0883	
Kaa	0,0342	0,0051	0,1576	
Kbr	0,1602	0,1736	0,1147	
Kee	0,0910	0,0468	0,1091	
Kes	0,0735	0,0671	0,0273	
Kar	0,1137	0,1042	0,1043	
Kdeg	0,1712	0,1510	0,0743	
Kas	0,0658	0,1656	0,1417	

Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42 ISSN 1412-6257

90 Konsentrasi *Crosslink* (mol/m³) 80 70 60 50 40 30 20 10 0 0 200 400 600 Waktu (detik) Data Model 1 Model 2 Model 3

Model 1, 2, dan 3 Pada Sampel Sulfur 4 phr dan MBTS 0,75 phr Pada 150°C

Pada Gambar 1 terlihat perbandingan data sampel sulfur 4 phr dan MBTS 0,75 phr dengan model 1, 2, dan 3 senyawa crosslink pada suhu 150°C. Pada saat t = 0 senyawa *crosslink* belum terbentuk. Hal ini membuktikan bahwa adanya reaksi kimia akselerator sebagai tahap reaksi awal pada proses vulkanisasi karet alam.

Dari perhitungan sum of square error pada Gambar 1 antara model 1 senyawa crosslink dengan data mol crosslink pada sampel sulfur 4 phr dan MBTS 0,75 phr pada 150°C didapat nilai sebesar 11836 dengan persen error sebesar 43%. Nilai sum of square error cukup besar yang membuat model 1 kurang dipilih menjadi mekanisme reaksi meskipun sudah dapat menggambarkan mekanisme reaksi vulkanisasi karet alam dengan *filler* abu sawit. Sedangkan model 2 lebih bagus dari pada model 1 karena nilai sum of square error antara model 2 senyawa crosslink terhadap data mol crosslink pada sampel sulfur 4 phr dan MBTS 0,75 phr pada 150°C yang lebih kecil yaitu sebesar 180 dengan persen error 5%. Model 3 tidak menggambarkan kurva model karaktersitik vulkanisasi karet alam dengan *filler* abu sawit karena paling tingginya nilai sum of square error dibanding model 1 dan 2. Nilai sum of square error antara model 3 senyawa crosslink terhadap data mol crosslink pada sampel sulfur 4 phr dan MBTS 0,75 phr pada 150°C adalah sebesar 61049 dengan persen error 93%.

Model 1, 2, dan 3 juga dapat menggambarkan kurva konsentrasi senyawa - senyawa penting lainnya dalam vulkanisasi karet alam seperti sulfur dan akselerator MBTS.

Gambar 2. Kurva Konsentrasi Sulfur vs Waktu Model 1, 2 dan 3 Pada Sampel Sulfur 4 phr dan MBTS 0,75 phr Suhu 150°C

Pada Gambar 2 dan 3 terlihat bahwa sulfur dan MBTS yang termasuk reaktan dalam vulkanisasi karet alam mengalami penurunan konsentrasi. sulfur mengalami Konsentrasi penurunan konsentrasi yang cukup cepat karena sulfur memang terlibat dengan banyak reaksi seperti reaksi antara sulfur dengan MBTS, reaksi sulfur dengan radikal polisulfida, dan reaksi sulfur radikal persulfenyl dengan sesuai tabel mekanisme reaksi yang dipaparkan. Sedangkan MBTS juga mengalami penurunan konsentrasi yang cukup cepat namun konsentrasi kembali naik pada detik ke - 100 sesuai model 1 dan 2. Hal ini membuktikan adanya reaksi antar radikal polisulfida yang membentuk senyawa MBTS.

Secara keseluruhan kecenderungan hasil prediksi model kinetika mekanisme reaksi vulkanisasi karet alam dengan filler abu sawit mirip dengan Ghosh et al [2003]. Hal ini disebabkan karena filler abu sawit memang tidak mempengaruhi proses mekanisme reaksi vulkanisasi karet alam. Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42 ISSN 1412-6257

Filler abu sawit hanya berfungsi untuk meningkatkan sifat – sifat mekanik pada karet alam.

Gambar 3 Kurva Konsentrasi MBTS vs Waktu Model 1, 2, dan 3 Pada Sampel Sulfur 4 phr dan MBTS 0,75 phr Suhu 150°C

Pengaruh *filller* abu sawit pada vulkanisasi karet alam juga telah dilakukan oleh Sombatsompop *et al* [2004] yang membandingkan pengaruh *precipitated silica* (Psi) dan *fly ash silica* (FASi) sebagai filler pada karet alam. Dari hasil penelitiannya diketahui bahwa abu sawit tidak terlalu berpengaruh pada peningkatan *crosslink density* dikarenakan abu sawit mengandung bahan – bahan non silika yang cukup besar. Sedangkan pada *filler precipitated silica* (Psi) nilai *crosslink density* stabil pada 30 phr *precipitated silica* (Psi) dalam 100 phr karet alam dan terus meningkat pada jumlah phr *precipitated silica* (Psi) yang lebih besar.

KESIMPULAN

Model kinetika reaksi proses vulkanisasi karet alam dengan *filler* abu sawit paling baik digambarkan dengan model 2, yaitu model dengan penambahan sulfur secara bertahap. Mol *crosslink* vulkanisasi karet alam dengan *filler* abu sawit terbesar didapat dari sampel dengan konsentrasi sulfur 4 phr dan MBTS 0,75 phr pada suhu 150°C yaitu sebesar 80,523 mol/m³.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Lili Saktini dan Ihda Novia yang telah banyak memberikan saran dan masukan bagi kesempurnaan pada penulisan jurnal ini.

LAMBANG DAN SINGKATAN

А	Pre-eksponensial Faktor		
Ao	Akselerator MBTS		
A_1	Senyawa Monosulfida		
Ax. Av. Az	Senvawa Polisulfida		
B*x, B*v	Radikal Persulfenyl		
Bx	Crosslink Prekursor		
CPO	Crude Palm Oil		
Fa	Energi Aktivasi		
Ea E*a	Dadikal Daligulfida		
E.0	Nam Sulfar		
E*/E*-	Non - Sullur De dileel De lieselfide		
$\mathbf{E}^{*}\mathbf{X}/\mathbf{E}^{*}\mathbf{Z}$	Kaukai Polisulliua		
K _{A-S}	MBTS		
K _{A-A}	Konstanta reaksi exchange reaction		
K _{A-R}	Konstanta reaksi pembentukan		
	crosslink perkursor		
K _{B-R}	Konstanta reaksi pemecahan		
	crosslink perkursor		
K_{Vu}	Konstanta reaksi pembentukan		
	crosslink		
KDEG	Konstanta reaksi degradasi		
DEO	crosslink		
V	Konstanta realizi dagulfurigagi		
K DESULF	arosslink		
V	<i>Crossunk</i>		
RE-S	dongon sulfur		
17			
$\mathbf{K}_{\text{E-R}}$	Konstanta reaksi radikal polisulfida		
17	dengan karet		
K _{BST-S}	Konstanta reaksi radikal persulfenyl		
17	dengan sulfur		
KLOOP	Konstanta reaksi pembentukan <i>loop</i>		
K _{A-BST}	Konstanta <i>delay reaction</i>		
K _{E-E}	Konstanta pembentukan senyawa		
V-	Vonstanta nomecchan converse		
кв	policulfida		
MDTC	2.2. dithickersethiosele		
MBIS	2,2 - diffionenzoimazoie		
MBI	2 - mercaptobenzothiazoles		
MDR	Moving Disk Kheometer		
NK	Natural Kubber		
58 SID	8 Atom Sulfur		
	Standart Indonesian Rubber		
эх, эу тмо			
IMQ	r mietniquinone		
Vux	Crosslink		
(n()	Neng Oksida		

DAFTAR PUSTAKA

Direktorat Jenderal Perkebunan, 2011. Luas Areal dan Produksi Perkebunan Seluruh Indonesia Menurut Pengusahaan, [Online] Available at: <u>http://ditjenbun.deptan.go.id</u> [Accessed 25 Maret 2014]. Jurnal Sains dan Teknologi 13 (2), September 2014: 35-42 ISSN 1412-6257

- Fogler, H.S., 1999. *Elements of Chemical Reaction Engineering, Third Edition,* Prentice Hall, New Jersey.
- Gapkindo, 2011. 2020: RI Targetkan Jadi Produsen Karet Terbesar Dunia, Available at :<u>http://www.gapkindo.org</u>. [Accessed 26 April 2014].
- Ghosh, P., S. Katare., P. Patkar., J.M. Caruthers, and V. Venkatasubramanian, 2003. Sulfur Vulcanization of Natural Rubber For Benzothiazole Accelerated Formulations: From Reaction Mechanisms to A Rational Kinetic Model, *Rubber Chemistry and Technology*, Page: 592 – 693, Purdue University, West Lafayette.
- Levenspiel, O., 1999. *Chemical Reaction Engineering Third Edition*, John Wiley and Sons, Singapore..
- Sombatsompop, N., S. Thongsang., T. Markpin., E. Wimolmala., 2004. Fly Ash Particles and Precipitated Silica as Fillers in Natural Rubber and Styrene – Butadiene Rubber Compound, *Journal of Applied Polymer Science*, Vol 93: 2119–2130, Bangkok.
- Vasilakos, S.P and Tarantili, P.A., 2012, In Situ Monitoring Of Curing Of Polysiloxane Nanocomposites, Based On Addition Elastomers, ECCM 15 – 15th European Conference On Composite Materials, Italy.